Binary Candidates in the Jovian Trojan and Hilda Populations from NEOWISE Lightcurves

Sarah Sonnett^{1,2}, Amy Mainzer¹, Tommy Grav³, Joe Masiero¹, Gerbs Bauer¹

¹ JPL / CalTech, ² NASA Postdoctoral Fellow, ³ Planetary Science Institute

Sonnett et al. (2015)

Jovian Trojans: Diagnostics of Solar System Formation

- ~ 5500 Trojans: in situ formation or implantation?
- ~ 3900 Hildas
- Similarity between Trojan clouds → Jupiter migration
- Similarity to other small body populations → supply rate and formation location
- Dominant binary formation mechanism? → dynamic and collisional evolution

WISE observations of Trojans & Hildas

- All-sky Infrared Survey
- Simultaneous 4-band imaging: 3.4, 4.6, 12, and 22 μm
- 3.4 & 4.6 μm: reflected sunlight & thermal emission
- 12 & 22 μm: thermal emission

- Albedos & Diameters of ~1800 Trojans, ~1000 Hildas
- ~12 thermal measurements per object over 36 hours → lightcurve most likely defined by shape

Shapes & Binarity through Lightcurves

Elongated MBA (243) Ida

Lacerda & Jewitt (2007)

Lacerda (2011); Sheppard & Jewitt (2004)

Sample Binary Candidates

Mann et al. (2007)

Sample Binary Candidates

Binary Results before Debiasing

Population	# candidates		Diameter range of candidates	Sample Size	Crude binary fraction
L4 Trojans	21	(1 known)	13 – 150 km	503	14 – 25%
L5 Trojans	16	(2 known)	13 – 45 km	446	12 – 21%
All Trojans	37	(3 known)	13 – 150 km	953	14 – 23%
Hildas	48		4 – 36 km	554	30 – 51%

- Previous Trojan binary fraction: 6 10% (Mann et al. 2007)
- Binary fractions include potential false positives
- Trojan sample ≥ 12 km
- Hilda sample ≥ 4 km
- These results in Sonnett et al. (2015)

The Full Debiasing Process

- How likely are we to observe the true lightcurve amplitude given our photometric uncertainties and observing cadence?
- How likely are we to see a large amplitude lightcurve given the orientation of the system?
- How likely is this sample to be representative of the intrinsic binary fraction that should arise?

Questions for Modelers

 At what size regime are we more likely to see elongated monoliths, not elongated rubble piles?

• What is the binary survival fraction for different planetary migration models?

Conclusions

- Our binary search algorithm flagged all known Trojan contact binaries
- Dense lightcurve follow-up needed to confirm binarity
- Upcoming debiased fractions will take into account observing circumstances, object orientation, and Poisson statistics
- Analyzing full sample after debiasing should allow for investigation of axis ratio distributions and comparisons between binary fractions of subpopulations like:
 - -- D- vs. C-/P-type Hildas and Trojans
 - -- Trojans vs. TNOs
 - -- Large vs. Small Hildas and Trojans