

Cometary Dust Tails in NEOWISE

Emily Kramer¹, James Bauer¹, Yan Fernandez², Rachel Stevenson, Amy Mainzer¹, Joe Masiero¹, Tommy Grav³ ¹Jet Propulsion Laboratory ²University of Central Florida ³Planetary Science Institute

Introduction

• Definitions: nucleus, coma, tail, and trail

rosetta.jpl.nasa.gov

67P at 3.3 AU in Jan. 2010

Types of Comets

- LPC = Long Period Comet
 - Orbital Period >200 years, uniform inclination distribution
- SPC = Short Period Comet
 - Orbital Period <200 years, inclinations near ecliptic
 - Can be further split in to Jupiter Family Comets (JFCs P<20 years) and Halley Type Comets (HTCs, 20<P<200 years)

Why are comets interesting?

- Comets as tracers of protoplanetary disk conditions
- Mixing in the early disk
- Thermal evolution of different populations
- Potential hazards

Cometary Volatiles

- H₂O is most abundant, followed by CO₂ and CO
- Different volatiles have different "turn on" points

From Meech et al., 2004 in Comets II

Cometary Dust

- Lifted off the comet's surface when volatiles sublimate
- From the Stardust sample return mission, we know that cometary dust is fractal and porous
- Made of refractory materials from the protoplanetary disk
- Can also be used as a tracer for volatile activity

http://stardust.jpl.nasa.gov

Cometary Dust in NEOWISE

 For comets, W1 is reflected sunlight, W3 and W4 is thermal emission, and W2 is a combination of those two and also contains emission from CO/CO₂

Comets detected by WISE, prime mission

- 160 comets detected
 - ~2/3 short-period
 - ~1/3 long-period
- 21 comets discovered (or activity discovered)
- 89 comets have a significant dust tail in W3/W4
- Each comet detected several times, for an average integration time of ~90s
- Images were stacked using AWAIC to increase the SNR, and interpolated to give a pixel scale of 1"/pixel

Representative comets

Dynamical Modeling

- Finson-Probstein modeling
 - Assumes that the only forces acting on a particle are solar radiation pressure and solar gravity

$$\beta = \frac{F_{radiation}}{F_{gravity}}$$

In physical units

$$\beta = \frac{CQ_{pr}}{\rho_d a}$$

Finson and Probstein, 1968

Dynamical Modeling

- The radiation pressure essentially acts as a reduction to solar gravity, with smaller particles being more strongly affected than larger particles (β is inversely proportional to particle size)
- β is incorporated into the equation of motion for the dust particles
- Software takes in a set of β values and comet positions, and integrates the motion of the dust over a designated time interval
- Returns a matrix of points which can then be plotted as curves of constant β (syndynes), or curves of constant emission date (synchrones)

Dynamical Modeling

- Models give age and size of the particles in the dust tail
- Using the age of the particles, we can calculate the heliocentric distance at which strong emission occurred

Syndynes (yellow) and synchrones (cyan) for C/2008 T2 (Cardinal)

Tail fitting method

Allows best-fit models to be chosen analytically

Tail fitting method

- Since this technique requires the tail to be relatively bright and long, comets with faint, short tails are selected against
- This also does not work well when there is significant background contamination, or for comets with very low orbit plane angle separation

Words of Caution: Interpretation

- Synchrones are generally used to model outburst events. We are using them as a proxy for the onset of strong activity.
- The best-fit syndynes are actually an average particle size, since the particles in the middle of the tail are being modeled.
- We have limited the analysis to the 40 comets with well-fit tails, and only the W4 images (due to a higher SNR)

Heliocentric Distance at Emission

Heliocentric Distance at Emission

 For most comets, strong emission (which evolves into the tail we see in the images) occurred close to perihelion

Particle Size

- Most of the tails are comprised of large (~mm to cm sized) particles
- We are sampling the large end of the particle size distribution

Relationship between β and heliocentric distances

Comets Discovered by NEOWISE

237P/2002 LN13 (LINEAR)	233P/La Sagra (2009 WJ50)	P/2009 WX51 (Catalina)	P/2010 B2 (WISE)	P/2010 D1 (WISE)	P/2010 JC81 WISE
C/2010 D2 (WISE)	C/2010 D3 (WISE)	C/2010 D4 (WISE)	C/2010 DG56 (WISE)	C/2010 E3 (WISE)	C/2014 C3 (NEOWISE
			and the second	Contraction of the	
C/2010 FB87 (Garradd-WISE)	C/2010 G3 (WISE)	C/2010 J4 (WISE)*	P/2010 K2 WISE	C/2010 KW7 WISE	P/2014 L2 (NEOWISE
245P/2010 L1 WISE	C/2010 L4 WISE	C/2010 L5 WISE*	P/2010 N1 WISE	P/2010 P4 WISE	C/2014 N3 (NEOWISE

Discoveries: nucleus size

 Model and subtract dust coma, fit NEATM to extracted nucleus flux

Full set: dust temperature and quantity

- Perform blackbody temperature fits to the W3 and W4 dust coma
- This also allows us to calculate εfρ (a measure of dust quantity)

Kramer et al., WISE at 5, Pasadena, 2015

Full Set: CO₂ production

Use W2 excess flux to calculate Q_{CO2} (CO₂ production)

Comets detected in NEOWISE restart

- 60+ comets detected
 - ~1/2 short-period
 - ~1/2 long-period
- 3 comets discovered

Several comets have a significant dust tail

Conclusions

- There is a wide range of morphology and activity levels present in the dust tails of both SPCs and LPCs
- Most of the dust tails were several months to several years old
- All of the comets showed strong emission that begins at or before perihelion (i.e., none began post-perihelion)
- For both SPCs and LPCs, most had dust tails comprised of ~mm to cm sized particles
- No clear relationship between beta and emission distance or perihelion distance
- In nearly all aspects of the analysis (except nucleus size), SPCs and LPCs are remarkably similar!

The research here was funded by NESSF grant NNX12AN88H, and a NASA Postdoctoral Program Fellowship. This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/ Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA.

Full set: CO₂ normalized to dust production rate

• Two distinct regimes, due to different volatiles?

Modeling the dust tail

Finson-Probstein modeling

$\beta = \frac{F_{radiation}}{F_{gravity}}$

- Models give age and size of the particles
- Smaller beta corresponds to larger particles
- Syndynes: constant particle size
- Synchrones: constant emission date
- Models run for 5 years, $0.0001 < \beta < 3.0$

Syndynes (yellow) and synchrones (cyan) for C/2008 T2 (Cardinal)

Comets with a dust tail

- 89 with a dust tail
 - 34 LPC

- 40 well-fit comets (described more later)
 - 19 LPC
 - 21 SPC

