Testing AGN unification with WISE

Robert Nikutta (PUC)

Željko Ivezić, Nicholas Hunt-Walker (UW), Maia Nenkova (Seneca College), Moshe Elitzur (UKY, UCB)

WISE at 5, Caltech, Pasadena, 11 February 2014

NASA/WISE/JPL press release March 14, 2012

AGN: point-like source of light at nucleus of host galaxy

CenA optical (Rejkuba et al., ESO/VLT)

CenA IR (Keene, SSC/Caltech)

Active galaxy spectrum

Geometrically \& optically thick toroidal structure

Antonucci 1993, Urry \& Padovani 1995

art credit: Annie Mejia / Caltech

Is axisymmetric torus the right geometry?
\rightarrow Martin Elvis' poster \#8 "Tilted/warped tori"

CLUMPY torus model

single cloud optical depth

τ_{v}
clouds/ray in equatorial plane N_{0}
angular torus width
σ
torus thickness
$Y=R_{o} / R_{d}$
radial cloud distribution r^{-q}
observer viewing angle i

It looks like...

Toy model

More realistic

Astronomy picture of the day Feb 24, 2014 http://apod.nasa.gov/apod/ap140224.html Markowitz, Krumpe, Nikutta, MNRAS 2014, Video: Wolfgang Steffen (UNAM)

Emission maps look rather like this...

Brightness maps

Spectral energy distributions (SED)

Public database of model SEDs

www.clumpy.org

- Large parameter space covered
- ~ 1.3 million models
- freely accessible
- can run own models

Until now: So many models, so little data...

But now: observations (surveys) are finally catching up.

- SDSS: $10^{5}-10^{6}$ QSOs
- LSST: $\sim 10^{7}$ QSOs
- WISE: $\sim 10^{6}$ QSOs in IR

NASA/WISE/JPL press release March 14, 2012

Models vs. WISE colors

Wright+2010

Nikutta+2014

For Galaxy and satellites, see Željko's talk, and Nikutta+2014 (MNRAS) Clumpy WISE colors match QSOs \& Seyferts (Nikutta+, in prep.)

CLUMPY models vs. WISE colors

normalized CLUMPY model number density

Nikutta+ (in prep.)

CLUMPY models vs. Spitzer/IRAC AGN colors

Stern et al. (2005)

Clumpy colors match "Stern et al. (2005) wedge" very well.

Testing unification - Distribution in WISE CC diagram

5- σ limits \& saturation limit W1 \& $|b|>10$ \& Stern et al. (2012) AGN color cut

Testing unification - Model density

Density contours: CLUMPY models; make a bit more blue b/c they are missing the "K-bump" (e.g. Mor+2009) \rightarrow Marvin Rose's poster \#29

Testing unification - QSO locus

Blue box: approximate QSO locus
e.g. Wright+2010, Yan+2013

QSO/type-1 AGN locus

Wright+2010

Yan+2013

Matching ALLWISE vs. SDSS DR7 VAGC subclass: (N. Hunt-Walker)

"broadline"

"SB broadline"

Where is the type-2 population, i.e. type-1 counterparts?

Inspired by Kevin Luhman's Next-Gen/Gen-X remark yesterday...

Shamelessly borrowed from: http://robby-robert.deviantart.com/

Reproduce the CC (CCM) distribution with linear combination of models

One model $=$ one track; function of viewing $\cos (\mathrm{i})$

Reproduce the CC (CCM) distribution with linear combination of models

grid cells intersected by a track; model can only contribute here

Reproduce the CC (CCM) distribution with linear combination of models

pixels independent \longrightarrow flatten the array, 1-d problem

Reproduce the CC (CCM) distribution with linear combination of models

Multiple tracks can contribute to a cell

Reproduce the CC (CCM) distribution with linear combination of models

Array of 100 flattened track contributions (hit-or-miss matrix)

Reproduce the CC (CCM) distribution with linear combination of models

Data

Reproduce the CC (CCM) distribution with linear combination of models

Data + one track (i.e. one model)

Another track ("tracklet"?)

Solve linear regression function for the vector of weights θ

$$
Y=M \theta
$$

data vector

$$
Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
y_{N p i x}
\end{array}\right]
$$

vector of regression coefficients (not model parameters!)

$$
\theta=\left[\begin{array}{c}
\theta_{1} \\
\cdot \\
\theta_{N m o d}
\end{array}\right]
$$

model/design matrix

$$
M=\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \cdot & m_{1, N p i x} \\
m_{2,1} & m_{2,2} & \cdot & m_{2, N p i x} \\
\cdot & \cdot & \cdot & \cdot \\
m_{\text {Nmod }, 1} & m_{N \text { mod }, 2} & \cdot & m_{\text {Nmod,Npix }}
\end{array}\right]
$$

Math and methods straight from...

Ivezić, Connolly, VanderPlas, Gray, "Statistics, Data Mining, and Machine Learning in Astronomy", Princeton Univ. Press 2013

A zoo of regression methods:
linear regression, polynomial, basis functions, ...
General MLE solution: $\theta=\left(M^{T} C^{-1} M\right)^{-1}\left(M^{T} C^{-1} Y\right)$
Can yield very large regression coefficients.
Introduce regularization (penalize large coefficients): Ridge regression, Lasso regression, Bayesian regression, elastic net, ...

Use Python (to paraphrase Frank Masci: it's REALLY addictive!)

numpy, scipy, scikit-learn, astroML, pyfits, CASA (ALMA data red.), ...

```
from sklearn.linear_model import Lasso
# set up design matrix M and data vector Y...
model = Lasso()
model.fit(M,Y)
# regression coefficients are now ready in model.coef_
```


Regression weights

Lasso regression - Results

Preliminary.

Lasso regression - Results

Preliminary.

Collapsed histograms - binsize $\sim 0.1 \mathrm{mag}$

Preliminary.

Collapsed histograms - binsize ~ 0.2 mag

Preliminary.

Collapsed histograms - binsize $\sim 0.3 \mathrm{mag}$

Preliminary.

Lasso regression - binsize $\sim 0.2 \mathrm{mag}$

Preliminary.

Recipes for matching infinitely thin spaghetti to distribution of mathematical points? (or better: to points with fuzzy locations?)

Coverage by models

Preliminary.

Parameter distributions - weighted histograms

Preliminary.

Probably only the modelers like myself are interested in these...

Prediction of type- 1 and type-2 locations in CC space

Preliminary.

Prediction of type- 1 and type-2 locations in CC space

Preliminary.

Prediction of type-1 and type-2 locations in CC space

Ramos Almeida et al. 2011

Prediction of type- 1 and type-2 locations in CC space

Preliminary.

Proof of concept works. What's missing?

- Add (at least) one more axis: W1 some model viewings will drop out when changing orientation
- Regression will find appropriate CCM distribution of models
- Use e.g. results from clustering measurements to derive z-distribution See Lin Yan's talk yesterday, and Alex Mendez' poster 24
- Then we know everything, including luminosity distribution of QSOs, observable type- $1 / 2$ counts, their locations in CC spaces, ...

Thank you.

robert.nikutta@gmail.com wWw. clumpy.org

