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The Hubble sequence  
a morphological classification
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Figure 1. Mosaic of the 29 HST/ACS images. Each image is 10′′ ×10′′. NE is toward the upper left. At an average redshift of ⟨z⟩ ∼ 0.319, these 200 × 200 pixel images
correspond to about 44 kpc across. For reference, we show the 3′′ SDSS fiber aperture overlaid on the first image. See also http://physics.uwyo.edu/agn/psq/index.html
for a finer detailed view.
(A color version of this figure is available in the online journal.)

The Sérsic power law is a generalized power law defined by
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The pixel surface brightness at the effective radius reff is Σeff .
The effective radius is defined such that half of the flux is within
reff and constrains κ to be coupled to the Sérsic index, n. The
Sérsic index, also called the concentration index, describes the
shape or concentration of the brightness profile. A large index
gives a steeply sloping profile towards small radii with extended
wings. Conversely, small values of n have shallow inner profiles
with steep truncation at large radius. Special cases of the Sérsic
power law are the exponential (n = 1), de Vaucouleurs (n = 4),
and Gaussian profile (n = 0.5) used to fit the disk, bulge, and
PSF of galaxies, respectively.

We decompose the image to determine the quasar-to-host
light fraction, host morphology, and other host parameters. The
method is as follows. First, we created a mask to exclude the
surrounding objects. Then, as suggested by Peng et al. (2002),
we begin by fitting a PSF simultaneously with the sky. In
GALFIT the fitting functions/light distributions are convolved
with the PSF to simulate blurring caused by the telescope optics.
We then introduce a number of different models: (1) Sérsic, (2)
de Vaucouleurs, (3) Bulge-plus-Disk (n = 4 and n = 1), and the
fit is then recalculated. The modeled components are all initially
centered on the position of the quasar, however, in subsequent
iterations the centroid is free to move.

For each light component the parameters of the fit include:
centroid of the component, magnitude, effective radius, Sérsic
index, axis ratio, and position angle. All of the components are
free to vary. The exception to this rule is when the fitting routine
settles on large values of the Sérsic index. Large Sérsic values
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Interacting Non-interacting

Cales et al. 2010

Quenching Event 

Much shorter duration

Mechanism less well understood

quenching 
event



NGC 1266

Alatalo et al. 2011, 2014a, 2015

NGC 1266 appears to be a “quiescent” S0 

NGC 1266 hosts a massive molecular 
disk (>109 M!)  
and a massive (>108 M!) molecular 
outflow that is multiphase 

NGC 1266 contains an AGN 

A young (1/2 Gyr) stellar population 
outside the nucleus points to a 
gravitational interaction causing the 
molecular gas to move to the center 

Star formation is suppressed by a factor 
of 50-150 seen in the nucleus Nyland et al. 2013



Finding the needle in the haystack

NGC 1266 hosts an AGN-driven 
outflow, but also contains a unique set 
of optical features
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shocked ionized gas ratios + poststarburst stellar population 
 

= 
 

a Shocked Poststarburst Galaxy (SPOG)

NGC 1266 is a SPOG.



SPOGS: the first results
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The unexpected
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What do these WISE colors mean?

10Wright et al. 2010, Alatalo et al. 2014b



What do these WISE colors mean?

10Wright et al. 2010, Alatalo et al. 2014b

ETGs LTGs



What do these WISE colors mean?

10Wright et al. 2010, Alatalo et al. 2014b

ETGs LTGs

AGN



Hickson Compact 
Groups:  

Galaxy evolution on 
steroids

group interactions



Introducing: Hickson Compact groups
HCGs have bimodal IR colors

Color-color plot from Lacy et al. (2004)
Lower left: red ETG HCGs
Upper right: blue spiral HCGs
Green: star-forming (non-HCG) galaxies

HCGs show bimodality between  
red colors (X) and blue  
colors (+) with very few in  
the gap

This gap is not as obvious in underlying 
population

=> rapid evolution in HCGs

Johnson et al. 2007  

Lacy et al. 2004, 2007; Johnson et al. 2007



CO(1-0) imaging in HCGs
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Inhibited star formation?
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HCG galaxies in 
our sample seem 
to be under-
producing stars for 
the amount of 
existing molecular 
gas.
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SF suppression & a connection to the IRTZ
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SF suppression & a connection to the IRTZ
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SF suppression in HCGs correlates  
with WISE colors.  

Suggestion of perturbed gas in these  
transitioning systems?

Alatalo et al. 2014b, Alatalo et al. 2015, in preparation



WISE in the ALMA era
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WISE 22μm can 
predict the total 
CO flux for SF 
galaxies
QSOs fall off of 
this relationship
SPOGs seem to lie 
in the region 
between pure 
QSOs and SF 
galaxies

Saintonge et al. 2011, Bauermeister et al. 2012,  
Evans et al. 2010, Lisenfeld et al. 2014, Alatalo et al. 2015, in prep



WISE and transitioning galaxies

group interactions

other

WISE is able to identify 
objects with SF suppression 
in HCGs through the W2-W3 
color, and is best correlated 
with that suppression

W4 (22μm) can predict the 
molecular gas quite well in 
star forming galaxies except 
in AGNs, but can also 
identify the intermediate 
objects between SF and 
QSOs in a 22μm - SCO plane



conclusions
When searching for new types of paths from spiral to ETG, serendipity helps 
(NGC 1266)

We are able to use the presence of a poststarburst stellar population plus 
shocked molecular gas to identify other galaxies like NGC 1266: spogs.

The selection from SPOGS identified transitioning objects, but also showed 
us a new lens through which to view transitions (the WISE IRTZ)

The IRTZ seems to identify galaxies in HCGs with suppressed SF, 
independent of the molecular gas mass

The WISE 22μm emission is able to predict the total CO flux in SF galaxies 
and identify those that are undergoing a transition (as SPOGs are predicted 
to be undergoing), or have intermediate luminosity AGNs.

 WISE data has only just begun to be mined in search of new discoveries, and 
this is just a small window into them through a transitioning galaxy lens.


